Ollama 快速入门:OpenAI API 兼容

Ollama 现在具有与 OpenAI Chat Completions API 的内置兼容性,从而可以在本地使用 Ollama 的更多工具和应用程序。

设置

首先下载 Ollama并提取Llama 3Mistral等模型:

ollama pull llama3

用法

cURL

要调用 Ollama 的 OpenAI 兼容 API 端点,请使用相同的 OpenAI 格式并将主机名更改为 http://localhost:11434

curl http://localhost:11434/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "llama3",
        "messages": [
            {
                "role": "system",
                "content": "You are a helpful assistant."
            },
            {
                "role": "user",
                "content": "Hello!"
            }
        ]
    }'

OpenAI Python 库

from openai import OpenAI

client = OpenAI(
    base_url = 'http://localhost:11434/v1',
    api_key='ollama', # required, but unused
)

response = client.chat.completions.create(
  model="llama3",
  messages=[
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Who won the world series in 2020?"},
    {"role": "assistant", "content": "The LA Dodgers won in 2020."},
    {"role": "user", "content": "Where was it played?"}
  ]
)
print(response.choices[0].message.content)

OpenAI JavaScript 库

mport OpenAI from 'openai'

const openai = new OpenAI({
  baseURL: 'http://localhost:11434/v1',
  apiKey: 'ollama', // required but unused
})

const completion = await openai.chat.completions.create({
  model: 'llama3',
  messages: [{ role: 'user', content: 'Why is the sky blue?' }],
})

console.log(completion.choices[0].message.content)

示例

Vercel AI SDK

Vercel AI SDK是一个用于构建对话流应用程序的开源库。首先,使用 create-next-app 克隆示例存储库:

npx create-next-app --example https://github.com/vercel/ai/tree/main/examples/next-openai example
cd example

然后进行以下两项编辑以app/api/chat/route.ts更新聊天示例以使用 Ollama:

const openai = new OpenAI({
  baseURL: 'http://localhost:11434/v1',
  apiKey: 'ollama',
});
const response = await openai.chat.completions.create({
  model: 'llama2',
  stream: true,
  messages,
});

接下来运行应用程序:

npm run dev

最后,在浏览器中通过http://localhost:3000打开示例应用程序:

Autogen

Autogen 是 Microsoft 推出的一款用于构建多智能体应用程序的流行开源框架。例如,我们将使用 Code Llama 模型:

ollama pull codellama

安装 Autogen:

pip install pyautogen

然后创建一个 Python 脚本 example.py 以将 Ollama 与 Autogen 结合使用:

from autogen import AssistantAgent, UserProxyAgent

config_list = [
  {
    "model": "codellama",
    "base_url": "http://localhost:11434/v1",
    "api_key": "ollama",
  }
]

assistant = AssistantAgent("assistant", llm_config={"config_list": config_list})

user_proxy = UserProxyAgent("user_proxy", code_execution_config={"work_dir": "coding", "use_docker": False})
user_proxy.initiate_chat(assistant, message="Plot a chart of NVDA and TESLA stock price change YTD.")

最后,运行示例让助手编写代码来绘制图表:

python example.py

Endpoints

/v1/chat/completions
Supported features
  • Chat completions
  • Streaming
  • JSON mode
  • Reproducible outputs
  • Vision
  • Function calling
  • Logprobs
Supported request fields
  • model
  • messages
    • Text content
    • Array of content parts
  • frequency_penalty
  • presence_penalty
  • response_format
  • seed
  • stop
  • stream
  • temperature
  • top_p
  • max_tokens
  • logit_bias
  • tools
  • tool_choice
  • user
  • n

默认模型名称

对于依赖于默认 OpenAI 模型名称的工具(例如)gpt-3.5-turbo,使用ollama cp将现有模型名称复制到临时名称:

ollama cp llama3 gpt-3.5-turbo

随后,可以在该字段中指定这个新的模型名称model:

curl http://localhost:11434/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "gpt-3.5-turbo",
        "messages": [
            {
                "role": "user",
                "content": "Hello!"
            }
        ]
    }'

参考资料:

作者:Jeebiz  创建时间:2024-07-21 19:06
最后编辑:Jeebiz  更新时间:2024-12-01 21:34