LaWGPT 基于中文法律知识的大语言模型

LaWGPT 是一系列基于中文法律知识的开源大语言模型。

该系列模型在通用中文基座模型(如 Chinese-LLaMA、ChatGLM 等)的基础上扩充法律领域专有词表、大规模中文法律语料预训练,增强了大模型在法律领域的基础语义理解能力。在此基础上,构造法律领域对话问答数据集、中国司法考试数据集进行指令精调,提升了模型对法律内容的理解和执行能力。

项目结构

LaWGPT
├── assets # 项目静态资源
├── data   # 语料及精调数据
├── tools  # 数据清洗等工具
├── README.md
├── requirements.txt
└── src    # 源码
    ├── finetune.py
    ├── generate.py
    ├── models  # 基座模型及 Lora 权重
    │   ├── base_models
    │   └── lora_weights
    ├── outputs
    ├── scripts # 脚本文件
    │   ├── finetune.sh # 指令微调
    │   └── generate.sh # 服务创建
    ├── templates
    └── utils
局限性

由于计算资源、数据规模等因素限制,当前阶段 LawGPT 存在诸多局限性:

数据资源有限、模型容量较小,导致其相对较弱的模型记忆和语言能力。因此,在面对事实性知识任务时,可能会生成不正确的结果。
该系列模型只进行了初步的人类意图对齐。因此,可能产生不可预测的有害内容以及不符合人类偏好和价值观的内容。
自我认知能力存在问题,中文理解能力有待增强。

作者:Jeebiz  创建时间:2023-12-12 12:20
最后编辑:Jeebiz  更新时间:2025-05-12 09:20