Databend Kafka Connect

现在我们也为 Databend 提供了 Kafka Connect Sink Plugin,这篇文章我们将会介绍如何使用 MySQL JDBC Source ConnectorDatabend Sink Connector 构建实时的数据同步管道。

配置 Connector

MySQL Source Connector
1、安装 MySQL Source Connector Plugin

这里我们使用 Confluent 提供的 JDBC Source Connector。

从 Confluent hub 下载 Kafka Connect JDBC 插件并将 zip 文件解压到 /path/kafka/libs 目录下。

2、安装 MySQL JDBC Driver

因为 Connector 需要与数据库进行通信,所以还需要 JDBC 驱动程序。JDBC Connector 插件也没有内置 MySQL 驱动程序,需要我们单独下载驱动程序。MySQL 为许多平台提供了 JDBC 驱动程序。选择 Platform Independent 选项,然后下载压缩的 TAR 文件。该文件包含 JAR 文件和源代码。将此 tar.gz 文件的内容解压到一个临时目录。将 jar 文件(例如,mysql-connector-java-8.0.17.jar),并且仅将此 JAR 文件复制到与 kafka-connect-jdbc jar 文件相同的 libs 目录下:

cp mysql-connector-j-8.0.32.jar /opt/homebrew/Cellar/kafka/3.4.0/libexec/libs/
3、配置 MySQL Connector

/path/kafka/config 下创建 mysql.properties 配置文件,并使用下面的配置:

name=test-source-mysql-autoincrement
connector.class=io.confluent.connect.jdbc.JdbcSourceConnector
tasks.max=1
connection.url=jdbc:mysql://localhost:3306/mydb?useSSL=false
connection.user=root
connection.password=123456
#mode=timestamp+incrementing
mode=incrementing
table.whitelist=mydb.test_kafka
poll.interval.ms=1000
table.poll.interval.ms=3000
incrementing.column.name=id
#timestamp.column.name=tms
topics=test_kafka

针对配置我们这里重点介绍 mode , incrementing.column.name ,和 timestamp.column.name 几个字段。Kafka Connect MySQL JDBC Source 提供了三种增量同步模式:

incrementingtimestamptimestamp+incrementing
4、在 incrementing 模式下,每次都是根据 incrementing.column.name 参数指定的列,查询大于自上次拉取的最大id:
SELECT * FROM mydb.test_kafka
WHERE id > ?
ORDER BY id ASC

这种模式的缺点是无法捕获行上更新操作(例如,UPDATE、DELETE)的变更,因为无法增大该行的 id。

5、timestamp 模式基于表上时间戳列来检测是否是新行或者修改的行。该列最好是随着每次写入而更新,并且值是单调递增的。需要使用 timestamp.column.name 参数指定时间戳列。

需要注意的是时间戳列在数据表中不能设置为 Nullable.

在 timestamp 模式下,每次都是根据 timestamp.column.name 参数指定的列,查询大于自上次拉取成功的 gmt_modified:

SELECT * FROM mydb.test_kafka
WHERE tms > ? AND tms < ?
ORDER BY tms ASC

这种模式可以捕获行上 UPDATE 变更,缺点是可能造成数据的丢失。由于时间戳列不是唯一列字段,可能存在相同时间戳的两列或者多列,假设在导入第二条的过程中发生了崩溃,在恢复重新导入时,拥有相同时间戳的第二条以及后面几条数据都会丢失。这是因为第一条导入成功后,对应的时间戳会被记录已成功消费,恢复后会从大于该时间戳的记录开始同步。此外,也需要确保时间戳列是随着时间递增的,如果人为的修改时间戳列小于当前同步成功的最大时间戳,也会导致该变更不能同步。

  1. 仅使用 incrementing 或 timestamp 模式都存在缺陷。将 timestamp 和 incrementing 一起使用,可以充分利用 incrementing 模式不丢失数据的优点以及 timestamp 模式捕获更新操作变更的优点。需要使用 incrementing.column.name 参数指定严格递增列、使用 timestamp.column.name 参数指定时间戳列。
SELECT * FROM mydb.test_kafka
WHERE tms < ?
  AND ((tms = ? AND id > ?) OR tms > ?)
ORDER BY tms, id ASC

由于 MySQL JDBC Source Connector 是基于 query-based 的数据获取方式,使用 SELECT 查询来检索数据,并没有复杂的机制来检测已删除的行,所以不支持 DELETE 操作。可以使用基于 log-based 的 [Kafka Connect Debezium]。

后面的演示中会分别演示上述模式的效果。更多的配置参数可以参考 MySQL Source Configs 。
Databend Kafka Connector

安装 OR 编译 Databend Kafka Connector

1、可以从源码编译得到 jar 或者从 release 直接下载。
git clone https://github.com/databendcloud/databend-kafka-connect.git & cd databend-kafka-connect
mvn -Passembly -Dmaven.test.skip package

databend-kafka-connect.jar 拷贝至 /path/kafka/libs 目录下。

2、安装 Databend JDBC Driver

Maven Central 下载最新的 Databend JDBC 并拷贝至 /path/kafka/libs 目录下。

3、配置 Databend Kafka Connector

/path/kafka/config 下创建 mysql.properties 配置文件,并使用下面的配置:

name=databend
connector.class=com.databend.kafka.connect.DatabendSinkConnector

connection.url=jdbc:databend://localhost:8000
connection.user=databend
connection.password=databend
connection.attempts=5
connection.backoff.ms=10000
connection.database=default

table.name.format=default.${topic}
max.retries=10
batch.size=1
auto.create=true
auto.evolve=true
insert.mode=upsert
pk.mode=record_value
pk.fields=id
topics=test_kafka
errors.tolerance=all

auto.createauto.evolve 设置成 true 后会自动建表并在源表结构发生变化时同步到目标表。关于更多配置参数的介绍可以参考 Databend Kafka Connect Properties

测试 Databend Kafka Connect

准备各个组件
1、启动 MySQL
version: '2.1'
services:
  postgres:
    image: debezium/example-postgres:1.1
    ports:
      - "5432:5432"
    environment:
      - POSTGRES_DB=postgres
      - POSTGRES_USER=postgres
      - POSTGRES_PASSWORD=postgres
  mysql:
    image: debezium/example-mysql:1.1
    ports:
      - "3306:3306"
    environment:
      - MYSQL_ROOT_PASSWORD=123456
      - MYSQL_USER=mysqluser
      - MYSQL_PASSWORD=mysqlpw
2、启动 Databend
version: '3'
services:
  databend:
    image: datafuselabs/databend
    volumes:
      - /Users/hanshanjie/databend/local-test/databend/databend-query.toml:/etc/databend/query.toml
    environment:
      QUERY_DEFAULT_USER: databend
      QUERY_DEFAULT_PASSWORD: databend
      MINIO_ENABLED: 'true'
    ports:
      - '8000:8000'
      - '9000:9000'
      - '3307:3307'
      - '8124:8124'
3、以 standalone 模式启动 Kafka Connect,并加载 MySQL Source ConnectorDatabend Sink Connector:
./bin/connect-standalone.sh config/connect-standalone.properties config/databend.properties config/mysql.properties

[2023-09-06 17:39:23,128] WARN [databend|task-0] These configurations '[metrics.context.connect.kafka.cluster.id]' were supplied but are not used yet. (org.apache.kafka.clients.consumer.ConsumerConfig:385)
[2023-09-06 17:39:23,128] INFO [databend|task-0] Kafka version: 3.4.0 (org.apache.kafka.common.utils.AppInfoParser:119)
[2023-09-06 17:39:23,128] INFO [databend|task-0] Kafka commitId: 2e1947d240607d53 (org.apache.kafka.common.utils.AppInfoParser:120)
[2023-09-06 17:39:23,128] INFO [databend|task-0] Kafka startTimeMs: 1693993163128 (org.apache.kafka.common.utils.AppInfoParser:121)
[2023-09-06 17:39:23,148] INFO Created connector databend (org.apache.kafka.connect.cli.ConnectStandalone:113)
[2023-09-06 17:39:23,148] INFO [databend|task-0] [Consumer clientId=connector-consumer-databend-0, groupId=connect-databend] Subscribed to topic(s): test_kafka (org.apache.kafka.clients.consumer.KafkaConsumer:969)
[2023-09-06 17:39:23,150] INFO [databend|task-0] Starting Databend Sink task (com.databend.kafka.connect.sink.DatabendSinkConfig:33)
[2023-09-06 17:39:23,150] INFO [databend|task-0] DatabendSinkConfig values:...
Insert

Insert 模式下我们需要使用如下的 MySQL Connector 配置:

name=test-source-mysql-jdbc-autoincrement
connector.class=io.confluent.connect.jdbc.JdbcSourceConnector
tasks.max=1
connection.url=jdbc:mysql://localhost:3306/mydb?useSSL=false
connection.user=root
connection.password=123456
#mode=timestamp+incrementing
mode=incrementing
table.whitelist=mydb.test_kafka
poll.interval.ms=1000
table.poll.interval.ms=3000
incrementing.column.name=id
#timestamp.column.name=tms
topics=test_kafka

在 MySQL 中创建数据库 mydb 和表 test_kafka:

CREATE DATABASE mydb;
USE mydb;

CREATE TABLE test_kafka (id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,name VARCHAR(255) NOT NULL,description VARCHAR(512));
ALTER TABLE test_kafka AUTO_INCREMENT = 10;

在插入数据之前,databend-kafka-connect 并不会收到 event 进行建表和数据写入。

插入数据:

INSERT INTO test_kafka VALUES (default,"scooter","Small 2-wheel scooter"),
(default,"car battery","12V car battery"),
(default,"12-pack drill bits","12-pack of drill bits with sizes ranging from #40 to #3"),
(default,"hammer","12oz carpenter's hammer"),
(default,"hammer","14oz carpenter's hammer"),
(default,"hammer","16oz carpenter's hammer"),
(default,"rocks","box of assorted rocks"),
(default,"jacket","water resistent black wind breaker"),
(default,"cloud","test for databend"),
(default,"spare tire","24 inch spare tire");

源表端插入数据后,

Databend 目标端的表就新建出来了:

同时数据也会成功插入:

Support DDL

我们在配置文件中 auto.evolve=true,所以在源表结构发生变化的时候,会将 DDL 同步至目标表。这里我们正好需要将 MySQL Source Connector 的模式从 incrementing 改成 timestamp+incrementing,需要新增一个 timestamp 字段并打开 timestamp.column.name=tms 配置。我们在原表中执行:

alter table test_kafka add column tms timestamp;

并插入一条数据:

insert into test_kafka values(20,"new data","from kafka",now());

到目标表中查看:

发现 tms 字段已经同步至 Databend table,并且该条数据也已经插入成功:

Upsert

修改 MySQL Connector 的配置为:

name=test-source-mysql-jdbc-autoincrement
connector.class=io.confluent.connect.jdbc.JdbcSourceConnector
tasks.max=1
connection.url=jdbc:mysql://localhost:3306/mydb?useSSL=false
connection.user=root
connection.password=123456
mode=timestamp+incrementing
#mode=incrementing
table.whitelist=mydb.test_kafka
poll.interval.ms=1000
table.poll.interval.ms=3000
incrementing.column.name=id
timestamp.column.name=tms
topics=test_kafka

主要是将 mode 改为 timestamp+incrementing 并添加 timestamp.column.name 字段。

重启 Kafka Connect。

在源表中更新一条数据:

update test_kafka set name="update from kafka test" where id=20;

到目标表中可以看到更新的数据:

总结

通过上面的内容可以看到 Databend Kafka Connect 具有以下特性:

  • Table 和 Column 支持自动创建: auto.create 和 auto-evolve 的配置支持下,可以自动创建 Table 和 Column,Table name是基于 Kafka topic name 创建的;
  • Kafka Shemas 支持: Connector 支持 Avro、JSON Schema 和 Protobuf 输入数据格式。必须启用 Schema Registry 才能使用基于 Schema Registry 的格式;
  • 多个写入模式: Connector 支持 insert 和 upsert 写入模式;
  • 多任务支持: 在 Kafka Connect 的能力下,Connector 支持运行一个或多个任务。增加任务的数量可以提高系统性能;
  • 高可用: 分布式模式下可以自动平衡工作负载,并可以动态扩展(或缩减)以及提供容错能力。

同时,Databend Kafka Connect 也能够使用原生 Connect 支持的配置,更多配置参考 Kafka Connect Sink Configuration Properties for Confluent Platform

相关资料

https://zhuanlan.zhihu.com/p/660303784

作者:Jeebiz  创建时间:2023-12-07 10:58
最后编辑:Jeebiz  更新时间:2024-11-01 10:06