= Titan Embeddings

Provides Bedrock Titan Embedding client.
link:https://aws.amazon.com/bedrock/titan/[Amazon Titan] foundation models (FMs) provide customers with a breadth of high-performing image, multimodal embeddings, and text model choices, via a fully managed API.
Amazon Titan models are created by AWS and pretrained on large datasets, making them powerful, general-purpose models built to support a variety of use cases, while also supporting the responsible use of AI.
Use them as is or privately customize them with your own data.

NOTE: Bedrock Titan Embedding supports Text and Image embedding.

NOTE: Bedrock Titan Embedding does NOT support batch embedding.

The https://aws.amazon.com/bedrock/titan/[AWS Bedrock Titan Model Page] and https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.html[Amazon Bedrock User Guide] contains detailed information on how to use the AWS hosted model.

== Prerequisites

Refer to the xref:api/bedrock.adoc[Spring AI documentation on Amazon Bedrock] for setting up API access.

=== Add Repositories and BOM

Spring AI artifacts are published in Spring Milestone and Snapshot repositories. Refer to the xref:getting-started.adoc#repositories[Repositories] section to add these repositories to your build system.

To help with dependency management, Spring AI provides a BOM (bill of materials) to ensure that a consistent version of Spring AI is used throughout the entire project. Refer to the xref:getting-started.adoc#dependency-management[Dependency Management] section to add the Spring AI BOM to your build system.

== Auto-configuration

Add the spring-ai-bedrock-ai-spring-boot-starter dependency to your project’s Maven pom.xml file:

[source,xml]

org.springframework.ai spring-ai-bedrock-ai-spring-boot-starter

or to your Gradle build.gradle build file.

[source,gradle]

dependencies {
implementation ‘org.springframework.ai:spring-ai-bedrock-ai-spring-boot-starter’

}

TIP: Refer to the xref:getting-started.adoc#dependency-management[Dependency Management] section to add the Spring AI BOM to your build file.

=== Enable Titan Embedding Support

By default the Titan embedding model is disabled.
To enable it set the spring.ai.bedrock.titan.embedding.enabled property to true.
Exporting environment variable is one way to set this configuration property:

[source,shell]

export SPRING_AI_BEDROCK_TITAN_EMBEDDING_ENABLED=true

=== Embedding Properties

The prefix spring.ai.bedrock.aws is the property prefix to configure the connection to AWS Bedrock.

[cols=”3,4,1”]
|====
| Property | Description | Default

| spring.ai.bedrock.aws.region | AWS region to use. | us-east-1
| spring.ai.bedrock.aws.access-key | AWS access key. | -
| spring.ai.bedrock.aws.secret-key | AWS secret key. | -
|====

The prefix spring.ai.bedrock.titan.embedding (defined in BedrockTitanEmbeddingProperties) is the property prefix that configures the embedding client implementation for Titan.

[cols=”3,4,1”]
|====
| Property | Description | Default
| spring.ai.bedrock.titan.embedding.enabled | Enable or disable support for Titan embedding | false
| spring.ai.bedrock.titan.embedding.model | The model id to use. See the TitanEmbeddingModel for the supported models. | amazon.titan-embed-image-v1
|====

Supported values are: amazon.titan-embed-image-v1 and amazon.titan-embed-text-v1.
Model ID values can also be found in the https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids-arns.html[AWS Bedrock documentation for base model IDs].

=== Sample Controller (Auto-configuration)

https://start.spring.io/[Create] a new Spring Boot project and add the spring-ai-bedrock-ai-spring-boot-starter to your pom (or gradle) dependencies.

Add a application.properties file, under the src/main/resources directory, to enable and configure the Titan Embedding client:

[source]

spring.ai.bedrock.aws.region=eu-central-1
spring.ai.bedrock.aws.access-key=${AWS_ACCESS_KEY_ID}
spring.ai.bedrock.aws.secret-key=${AWS_SECRET_ACCESS_KEY}

spring.ai.bedrock.titan.embedding.enabled=true

TIP: replace the regions, access-key and secret-key with your AWS credentials.

This will create a EmbeddingController implementation that you can inject into your class.
Here is an example of a simple @Controller class that uses the chat client for text generations.

[source,java]

@RestController
public class EmbeddingController {

private final EmbeddingClient embeddingClient;

@Autowired
public EmbeddingController(EmbeddingClient embeddingClient) {
    this.embeddingClient = embeddingClient;
}

@GetMapping("/ai/embedding")
public Map embed(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
    EmbeddingResponse embeddingResponse = this.embeddingClient.embedForResponse(List.of(message));
    return Map.of("embedding", embeddingResponse);
}

}

== Manual Configuration

The https://github.com/spring-projects/spring-ai/blob/main/models/spring-ai-bedrock/src/main/java/org/springframework/ai/bedrock/titan/BedrockTitanEmbeddingClient.java[BedrockTitanEmbeddingClient] implements the EmbeddingClient and uses the <> to connect to the Bedrock Titan service.

Add the spring-ai-bedrock dependency to your project’s Maven pom.xml file:

[source,xml]

org.springframework.ai spring-ai-bedrock

or to your Gradle build.gradle build file.

[source,gradle]

dependencies {
implementation ‘org.springframework.ai:spring-ai-bedrock’

}

TIP: Refer to the xref:getting-started.adoc#dependency-management[Dependency Management] section to add the Spring AI BOM to your build file.

Next, create an https://github.com/spring-projects/spring-ai/blob/main/models/spring-ai-bedrock/src/main/java/org/springframework/ai/bedrock/titan/BedrockTitanEmbeddingClient.java[BedrockTitanEmbeddingClient] and use it for text embeddings:

[source,java]

var titanEmbeddingApi = new TitanEmbeddingBedrockApi(
TitanEmbeddingModel.TITAN_EMBED_IMAGE_V1.id(), Region.US_EAST_1.id());

var embeddingClient new BedrockTitanEmbeddingClient(titanEmbeddingApi);

EmbeddingResponse embeddingResponse = embeddingClient

.embedForResponse(List.of("Hello World")); // NOTE titan does not support batch embedding.

== Low-level TitanEmbeddingBedrockApi Client [[low-level-api]]

The https://github.com/spring-projects/spring-ai/blob/main/models/spring-ai-bedrock/src/main/java/org/springframework/ai/bedrock/titan/api/TitanEmbeddingBedrockApi.java[TitanEmbeddingBedrockApi] provides is lightweight Java client on top of AWS Bedrock https://docs.aws.amazon.com/bedrock/latest/userguide/titan-multiemb-models.html[Titan Embedding models].

Following class diagram illustrates the TitanEmbeddingBedrockApi interface and building blocks:

image::bedrock/bedrock-titan-embedding-low-level-api.jpg[align=”center”, width=”500px”]

The TitanEmbeddingBedrockApi supports the amazon.titan-embed-image-v1 and amazon.titan-embed-image-v1 models for single and batch embedding computation.

Here is a simple snippet how to use the api programmatically:

[source,java]

TitanEmbeddingBedrockApi titanEmbedApi = new TitanEmbeddingBedrockApi(
TitanEmbeddingModel.TITAN_EMBED_TEXT_V1.id(), Region.US_EAST_1.id());

TitanEmbeddingRequest request = TitanEmbeddingRequest.builder()
.withInputText(“I like to eat apples.”)
.build();

TitanEmbeddingResponse response = titanEmbedApi.embedding(request);

To embed an image you need to convert it into base64 format:

[source,java]

TitanEmbeddingBedrockApi titanEmbedApi = new TitanEmbeddingBedrockApi(
TitanEmbeddingModel.TITAN_EMBED_IMAGE_V1.id(), Region.US_EAST_1.id());

byte[] image = new DefaultResourceLoader()
.getResource(“classpath:/spring_framework.png”)
.getContentAsByteArray();

TitanEmbeddingRequest request = TitanEmbeddingRequest.builder()
.withInputImage(Base64.getEncoder().encodeToString(image))
.build();

TitanEmbeddingResponse response = titanEmbedApi.embedding(request);

作者:Jeebiz  创建时间:2024-04-05 23:21
最后编辑:Jeebiz  更新时间:2024-07-06 19:00
---- ----