= Cohere Embeddings
Provides Bedrock Cohere Embedding client.
Integrate generative AI capabilities into essential apps and workflows that improve business outcomes.
The https://aws.amazon.com/bedrock/cohere-command-embed/[AWS Bedrock Cohere Model Page] and https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.html[Amazon Bedrock User Guide] contains detailed information on how to use the AWS hosted model.
== Prerequisites
Refer to the xref:api/bedrock.adoc[Spring AI documentation on Amazon Bedrock] for setting up API access.
=== Add Repositories and BOM
Spring AI artifacts are published in Spring Milestone and Snapshot repositories. Refer to the xref:getting-started.adoc#repositories[Repositories] section to add these repositories to your build system.
To help with dependency management, Spring AI provides a BOM (bill of materials) to ensure that a consistent version of Spring AI is used throughout the entire project. Refer to the xref:getting-started.adoc#dependency-management[Dependency Management] section to add the Spring AI BOM to your build system.
== Auto-configuration
Add the spring-ai-bedrock-ai-spring-boot-starter
dependency to your project’s Maven pom.xml
file:
[source,xml]
or to your Gradle build.gradle
build file.
[source,gradle]
dependencies {
implementation ‘org.springframework.ai:spring-ai-bedrock-ai-spring-boot-starter’
}
TIP: Refer to the xref:getting-started.adoc#dependency-management[Dependency Management] section to add the Spring AI BOM to your build file.
=== Enable Cohere Embedding Support
By default the Cohere model is disabled.
To enable it set the spring.ai.bedrock.cohere.embedding.enabled
property to true
.
Exporting environment variable is one way to set this configuration property:
[source,shell]
export SPRING_AI_BEDROCK_COHERE_EMBEDDING_ENABLED=true
=== Embedding Properties
The prefix spring.ai.bedrock.aws
is the property prefix to configure the connection to AWS Bedrock.
[cols=”3,4,1”]
|====
| Property | Description | Default
| spring.ai.bedrock.aws.region | AWS region to use. | us-east-1
| spring.ai.bedrock.aws.access-key | AWS access key. | -
| spring.ai.bedrock.aws.secret-key | AWS secret key. | -
|====
The prefix spring.ai.bedrock.cohere.embedding
(defined in BedrockCohereEmbeddingProperties
) is the property prefix that configures the embedding client implementation for Cohere.
[cols=”3,4,1”]
|====
| Property | Description | Default
| spring.ai.bedrock.cohere.embedding.enabled | Enable or disable support for Cohere | false
| spring.ai.bedrock.cohere.embedding.model | The model id to use. See the https://github.com/spring-projects/spring-ai/blob/056b95a00efa5b014a1f488329fbd07a46c02378/models/spring-ai-bedrock/src/main/java/org/springframework/ai/bedrock/cohere/api/CohereEmbeddingBedrockApi.java#L150[CohereEmbeddingModel] for the supported models. | cohere.embed-multilingual-v3
| spring.ai.bedrock.cohere.embedding.options.input-type | Prepends special tokens to differentiate each type from one another. You should not mix different types together, except when mixing types for for search and retrieval. In this case, embed your corpus with the search_document type and embedded queries with type search_query type. | SEARCH_DOCUMENT
| spring.ai.bedrock.cohere.embedding.options.truncate | Specifies how the API handles inputs longer than the maximum token length. If you specify LEFT or RIGHT, the model discards the input until the remaining input is exactly the maximum input token length for the model. | NONE
|====
Look at the https://github.com/spring-projects/spring-ai/blob/056b95a00efa5b014a1f488329fbd07a46c02378/models/spring-ai-bedrock/src/main/java/org/springframework/ai/bedrock/cohere/api/CohereEmbeddingBedrockApi.java#L150[CohereEmbeddingModel] for other model IDs.
Supported values are: cohere.embed-multilingual-v3
and cohere.embed-english-v3
.
Model ID values can also be found in the https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids-arns.html[AWS Bedrock documentation for base model IDs].
TIP: All properties prefixed with spring.ai.bedrock.cohere.embedding.options
can be overridden at runtime by adding a request specific <EmbeddingRequest
call.
=== Embedding Options [[embedding-options]]
The https://github.com/spring-projects/spring-ai/blob/main/models/spring-ai-bedrock/src/main/java/org/springframework/ai/bedrock/cohere/BedrockCohereEmbeddingOptions.java[BedrockCohereEmbeddingOptions.java] provides model configurations, such as input-type
or truncate
.
On start-up, the default options can be configured with the BedrockCohereEmbeddingClient(api, options)
constructor or the spring.ai.bedrock.cohere.embedding.options.*
properties.
At run-time you can override the default options by adding new, request specific, options to the EmbeddingRequest
call.
For example to override the default temperature for a specific request:
[source,java]
EmbeddingResponse embeddingResponse = embeddingClient.call(
new EmbeddingRequest(List.of(“Hello World”, “World is big and salvation is near”),
BedrockCohereEmbeddingOptions.builder()
.withInputType(InputType.SEARCH_DOCUMENT)
.build()));
=== Sample Controller (Auto-configuration)
https://start.spring.io/[Create] a new Spring Boot project and add the spring-ai-bedrock-ai-spring-boot-starter
to your pom (or gradle) dependencies.
Add a application.properties
file, under the src/main/resources
directory, to enable and configure the Cohere Embedding client:
[source]
spring.ai.bedrock.aws.region=eu-central-1
spring.ai.bedrock.aws.access-key=${AWS_ACCESS_KEY_ID}
spring.ai.bedrock.aws.secret-key=${AWS_SECRET_ACCESS_KEY}
spring.ai.bedrock.cohere.embedding.enabled=true
spring.ai.bedrock.cohere.embedding.options.input-type=search-document
TIP: replace the regions
, access-key
and secret-key
with your AWS credentials.
This will create a BedrockCohereEmbeddingClient
implementation that you can inject into your class.
Here is an example of a simple @Controller
class that uses the chat client for text generations.
[source,java]
@RestController
public class EmbeddingController {
private final EmbeddingClient embeddingClient;
@Autowired
public EmbeddingController(EmbeddingClient embeddingClient) {
this.embeddingClient = embeddingClient;
}
@GetMapping("/ai/embedding")
public Map embed(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
EmbeddingResponse embeddingResponse = this.embeddingClient.embedForResponse(List.of(message));
return Map.of("embedding", embeddingResponse);
}
}
== Manual Configuration
The https://github.com/spring-projects/spring-ai/blob/main/models/spring-ai-bedrock/src/main/java/org/springframework/ai/bedrock/cohere/BedrockCohereEmbeddingClient.java[BedrockCohereEmbeddingClient] implements the EmbeddingClient
and uses the <
Add the spring-ai-bedrock
dependency to your project’s Maven pom.xml
file:
[source,xml]
or to your Gradle build.gradle
build file.
[source,gradle]
dependencies {
implementation ‘org.springframework.ai:spring-ai-bedrock’
}
TIP: Refer to the xref:getting-started.adoc#dependency-management[Dependency Management] section to add the Spring AI BOM to your build file.
Next, create an https://github.com/spring-projects/spring-ai/blob/main/models/spring-ai-bedrock/src/main/java/org/springframework/ai/bedrock/cohere/BedrockCohereEmbeddingClient.java[BedrockCohereEmbeddingClient] and use it for text embeddings:
[source,java]
var cohereEmbeddingApi =new CohereEmbeddingBedrockApi(
CohereEmbeddingModel.COHERE_EMBED_MULTILINGUAL_V1.id(),
EnvironmentVariableCredentialsProvider.create(), Region.US_EAST_1.id(), new ObjectMapper());
var embeddingClient = new BedrockCohereEmbeddingClient(cohereEmbeddingApi);
EmbeddingResponse embeddingResponse = embeddingClient
.embedForResponse(List.of("Hello World", "World is big and salvation is near"));
== Low-level CohereEmbeddingBedrockApi Client [[low-level-api]]
The https://github.com/spring-projects/spring-ai/blob/main/models/spring-ai-bedrock/src/main/java/org/springframework/ai/bedrock/cohere/api/CohereEmbeddingBedrockApi.java[CohereEmbeddingBedrockApi] provides is lightweight Java client on top of AWS Bedrock https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-cohere-command.html[Cohere Command models].
Following class diagram illustrates the CohereEmbeddingBedrockApi interface and building blocks:
image::bedrock/bedrock-cohere-embedding-low-level-api.jpg[align=”center”, width=”800px”]
The CohereEmbeddingBedrockApi supports the cohere.embed-english-v3
and cohere.embed-multilingual-v3
models for single and batch embedding computation.
Here is a simple snippet how to use the api programmatically:
[source,java]
CohereEmbeddingBedrockApi api = new CohereEmbeddingBedrockApi(
CohereEmbeddingModel.COHERE_EMBED_MULTILINGUAL_V1.id(),
EnvironmentVariableCredentialsProvider.create(),
Region.US_EAST_1.id(), new ObjectMapper());
CohereEmbeddingRequest request = new CohereEmbeddingRequest(
List.of(“I like to eat apples”, “I like to eat oranges”),
CohereEmbeddingRequest.InputType.search_document,
CohereEmbeddingRequest.Truncate.NONE);
CohereEmbeddingResponse response = api.embedding(request);
最后编辑:Jeebiz 更新时间:2024-07-06 19:00